If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-400=0
a = 1; b = 3; c = -400;
Δ = b2-4ac
Δ = 32-4·1·(-400)
Δ = 1609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1609}}{2*1}=\frac{-3-\sqrt{1609}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1609}}{2*1}=\frac{-3+\sqrt{1609}}{2} $
| 3(x-18)+x=180 | | r^2=(4)^2+(3)^2 | | 3(3u-3)=4(u+3) | | (1,3);m=2 | | x^2+3x+400=0 | | Y-2x=100 | | 18=56+y-44 | | -7(w-3)=-2w+46 | | 3(z+4)=2(z-5)+z | | x+(1/2)x=90 | | 2x-2(2x-9)=3(2x-7)+7x | | 296(b-243)+186=507(b+492)-73 | | -5(2x-1)+4(2x+1)=3 | | 2(u-1)=6u-14 | | 11x÷x=11 | | 3(0)-2y=19 | | 3(z-4)=2(z-5)+z | | 5x+2=-2+4x | | -2w-6=-6(w+5) | | S=1/5(300-5e) | | 8x-3(3x-4)=3(x-6) | | 7/13x+1/2=1/3-6/13x+1/3 | | 5/8=20x | | 23x-5=31x | | 3x^2-27=9x+27 | | 4a^2+8a-24=0 | | 7v+24=-4(v+7) | | 5(3x+6)=8(2x+3)+2 | | 7+3x=2+7x | | 2x-4=2(2x-3) | | 1/2(x+8+243)=4x+3 | | 2.9n−6.7=n+4.7 |